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Abstract A toroidal polyhex H(p, q, t) is a cubic bipartite graph embedded on the
torus such that each face is a hexagon, which can be described by a string (p, q, t) of
three integers (p ≥ 1, q ≥ 1, 0 ≤ t ≤ p − 1). A set H of mutually disjoint hexagons
of H(p, q, t) is called a resonant pattern if H(p, q, t) has a prefect matching M such
that all haxgons in H are M-alternating. A toroidal polyhex H(p, q, t) is k-resonant
if any i (1 ≤ i ≤ k) mutually disjoint hexagons form a resonant pattern. In [16], Shiu,
Lam and Zhang characterized 1, 2 and 3-resonant toroidal polyhexes H(p, q, t) for
min(p, q) ≥ 2. In this paper, we characterize k-resonant toroidal polyhexes H(p, 1, t).
Furthermore, we show that a toroidal polyhex H(p, q, t) is k-resonant (k ≥ 3) if and
only if it is 3-resonant.
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1 Introduction

A toroidal polyhex is a cubic bipartite graph embedded on torus such that each face is a
hexagon, described by a string (p, q, t)of three integers (p ≥ 1, q ≥ 1, 0 ≤ t ≤ p−1)
and denoted by H(p, q, t) [11,16]. Toroidal polyhex had been considered in mathe-
matics as hexagonal tessellation (or dually triangulation) on torus [1,12,18]. In chem-
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istry, toroidal polyhex has been thought as a new possible carbon cage different from
spherical fullerene [4], also named toroidal fullerene or elementary benzenoid [9]. We
refer readers to surveys of toroidal polyhex [7,8].

Let G be a graph admitting a 2-cell embedding on torus. A face is even if it is
bound by a cycle with even size. In this paper, a face also means the cycle bounding it.
A set M of independent edges of G is called a perfect matching (a Kekulé structure in
chemistry) if every vertex of G is incident with exactly one edge of M . A cycle C of
G is M-alternating (or conjugated circuit) if the edges of C appear alternately in and
off M . A set H of mutually disjoint even faces of G is called a rsonant pattern if G
has a perfect matching M such that all faces in H are simultaneously M-alternating.
For a positive integer k, a graph is k-resonant if any i (i ≤ k) mutually disjoint even
faces form a resonant pattern. A resonant pattern H is also called a sextet pattern if
every even face in H is a hexagon. In this paper, all hexagons in a sextet pattern will
be designated by depicting circles within them; see Fig. 4.

In the Clar’s aromatic sextet theory [3], Clar found that various electronic properties
of polycyclic aromatic hydrocarbons can be predicted by sextet patterns from a purely
empirical standpoint, by which an aromatic hydrocarbon molecule with lager num-
ber of mutually resonant hexagons is more stable. From Randić’s conjugated circuits
model [13–15], the conjugated circuits with different sizes have different resonance
energies and the conjugated hexagons contribute the largest resonant energy among
all (4n + 2)-length circuits which contribute positively to resonant energy of molec-
ular. Zhang and Chen [19] characterized completely 1-resonant benzenoid systems: a
1-resonant benzenoid system coincides with a normal benzenoid system. The similar
result was extended to coronoid systems [2,21] and plane bipartite graphs [23]. Later,
Zheng [24,25] characterized general k-resonant benzenoid systems and showed that
any 3-resonant benzenoid system are also k-resonant (k ≥ 3). For coronoid benenoid
systems [10] and open-end nanotubes [20], the result is still valid. Recently, the con-
cept of k-resonance was extended to toroidal polyhexes and Klein-bottle polyhexes
[16,17]. We refer readers to recent surveys [5,6].

Each toroidal polyhex H(p, q, t) is elementary [16]. Different from plane elemen-
tary bipartite graph which is also 1-resonant, H(2, 2, 0) is the unique non-1-resonant
toroidal polyhex [16]. In [16], Shiu, Lam and Zhang have characterized 1, 2 and
3-resonant toroidal polyhexes H(p, q, t) for min(p, q) ≥ 2. In this paper, we charac-
terize k-resonant toroidal polyhexes H(p, 1, t)which are not discussed in [16] (except
the degenerated cases H(1, q, 0), H(p, 1, 0) and H(p, 1, p−1) since each hexagonal
face is not bounded by a cycle). Moreover, we prove that a toroidal polyhex H(p, q, t)
(p ≥ 1, q ≥ 1 and 0 ≤ t ≤ p − 1) is k-resonant (k ≥ 3) if and only if it is 3-
resonant, and thus settle an open problem of Guo [5]. For convenience, a toroidal
polyhex H(p, q, t) in question always means a non-degenerated case throughout this
paper.

2 Preliminaries

A toroidal polyhex is generated from a p ×q-parallelogram P of the hexagonal lattice
with the usual torus boundary identification with torsion t . A p × q-parallelogram
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Fig. 1 Toroidal polyhex
H(7, 3, 3) arising from a
7 × 3-parallelogram of the
hexagonal lattice

Fig. 2 The affine coordinate system X OY for H(7, 3, 2)

P considered here has two horizontal sides and two lateral sides: Each side connects
two hexagon centers; Two horizontal sides pass perpendicularly through p edges and
two lateral sides pass perpendicularly through q edges (see Fig. 1). In order to form
a toroidal polyhex H(p, q, t), first identify two lateral sides of P to form a tube, and
then identify the top side of the tube with its bottom side after rotating it through t
hexagons.

Let H(p, q, t) be a toroidal polyhex and V (H), E(H) be vertex set and edge set
respectively. Clearly, V (H) admits a proper 2-coloring: the vertices which are incident
with one downward vertical edge and two upwardly oblique edges are colored black
and other vertices white (see Fig. 2). Establish an affine coordinate system X OY for
H(p, q, t) as introduced in [16]: Take one horizontal side and one lateral side of the
p × q-parallelogram P as x-axis and y-axis such that two axes form an angle of 60◦
and P lies in non-negative region; The origin O is the intersection of two axes; Define
one unit length to be the distance between a pair of parallel edges in a hexagon. For any
positive integer n, let Zn := {0, 1, . . . , n − 1} with module additions. Now, we give
a labeling to vertices and hexagons of H(p, q, t). Label each hexagon by its center
coordinate (x, y) (x ∈ Zp, y ∈ Zq ) and denote it by hx,y or (x, y). For the upper
edge of (x, y) perpendicular to y-axis, label its black end by bx,y and its white end
by wx,y (see Fig. 2). So w0,yb0,y ∈ E(H) and wx,0bx+t+1,q−1 ∈ E(H). We also call
the cycle w0,yb1,yw1,yb2,y . . . wp−1,yb0,yw0,y yth layer, denoted by L y .

Let G1 and G2 be two simple graphs. An isomorphism between them is a bijection
φ : V (G1) → V (G2) such that, for any u, v ∈ V (G1), uv ∈ E(G1) if and only
if φ(u)φ(v) ∈ E(G2). An automorphism of a simple graph G is an isomorphism G
to itself. For a toroidal polyhex H(p, q, t), there are three hexagon-preserving auto-
morphisms: the r -l shift φrl moving every vertex horizontally backwards a unit, the
t-b shift φtb moving every vertex downwards a unit along the y-axis, and the 180◦
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Fig. 3 Illustration of the reflective symmetry against O O ′

Fig. 4 An ideal configuration of
H(6, 3, 1): the hexagons
depicted with circles and the
vertical double edges

rotation R2 surrounding the center of the parallelogram P . The generated subgroup
〈φrl , φtb, R2〉 is transitive on both vertex set and hexagon set of H(p, q, t) ([16]).

Lemma 2.1 [16] H(p, q, t) is hexagon-transitive. 	

Two toroidal polyhexes are equivalent if there exists a hexagon-preserving

isomorphism between them. Let O O ′ be a vertical line through the origin O of affine
coordinate of H(p, q, t) and let ψ be the reflective symmetry of H(p, q, t) against
O O ′ (see Fig. 3). Thenψ is a hexagon-preserving isomorphism andψ(H(p, q, t)) =
H(p, q, t ′) where t ′ ≡ p − q − t (mod p).

Lemma 2.2 H(p, q, t) is equivalent to H(p, q, t ′) where t ′ ≡ p − q − t (mod p).
	


Let S be a subgraph of a toroidal polyhex H(p, q, t) such that every component is
either hexagon or K2 (a complete graph with two vertices). S is an ideal configuration
[16] if it is alternately incident with white and black vertices along any direction of
every yth layer (see Fig. 4); S is a Clar cover [22] if it is a spanning subgraph of
H(p, q, t).

Lemma 2.3 [16] An ideal configuration S of a toroidal polyhex H(p, q, t) can be
extended to a Clar cover, and the hexagons in S are thus mutually resonant. 	


Let u, v be two vertices of yth layer with x-coordinates i and j , respectively. We
use P(u, v) ⊂ L y to denote the path from u to v such that the x-coordinate set
of all vertices of P(u, v) is {i, i + 1, . . . , j − 1, j}. For example, P(bi,y, w j,y) =
bi,ywi,ybi+1,y · · ·w j−1,yb j,yw j,y . A path is odd if it has odd number of edges, and it
is even, otherwise.

Lemma 2.4 Let S be a subgraph of H(p, q, t) such that every component is either
hexagon or K2. For any y ∈ Zq , if L y − S = ∅ or each component of L y − S is an
odd path, then S is an ideal configuration.

123



274 J Math Chem (2008) 44:270–285

Fig. 5 H(12, 1, 3) and x = 6 ≥ t + 3

Proof If L y − S = ∅, S is alternatingly incident with white and black vertices along
any direction of yth layer. If L y − S �= ∅, let P(u, v) be an odd path which is a com-
ponent of L y −S. Since H(p, q, t) is bipartite graph, the white vertices and the black
vertices appear alternatingly in P(u, v). So u and v have different colors. Immediately
we have S is alternatingly incident with white and black vertices along any direction
of yth layer. So S is an ideal configuration of H(p, q, t). 	


3 k-resonant H( p, 1, t)

In this section, the y-coordinate of all labels of vertices and hexagons of H(p, 1, t)
are omitted since they have the same value 0. For example L0 = w0b1w1b2w2 . . .

wp−1b0w0.
Since any hexagon of toroidal polyhexes H(p, 1, t) itself exactly forms an ideal

configuration, H(p, 1, t) is 1-resonant by Lemma 2.3.

Theorem 3.1 H(p, 1, t) is 1-resonant. 	


Theorem 3.2 H(p, 1, t) is 2-resonant if and only if either p < 8, or p ≥ 8 is odd,
or p ≥ 8 is even and t �= p

2 − 1 or p
2 .

Proof It is enough to prove that H(p, 1, t) is non-2-resonant if and only if p ≥ 8 is
even and t = p

2 − 1 or p
2 .

We first suppose that p ≥ 8 is even and t = p
2 − 1 or p

2 and show that H(p, 1, t) is
non-2-resonant. Choose a pair of hexagons (1, 0) and (3, 0), which can be expressed
asw0b1w1bt+2wt+1bt+1 andw2b3w3b4+tw3+t b3+t respectively, and are thus disjoint
since 3 < t + 1 and 4 + t ≤ p. Further the vertexw2+t outside the hexagons has three
neighbors b3+t , bt+2 and b1 (or b3), since (2 + t)+ t + 1 ≡ 1 or 3 (mod p) according
as t = p

2 − 1 or p
2 . That is, H(p, 1, t) − h1 − h3 has an isolated vertex w2+t . This

shows that such two hexagons are not mutually resonant.
For the other cases it is sufficient to choose a pair of disjoint hexagons and show

their mutual resonance. We consider H(p, 1, t) with 1 ≤ t ≤ p − 2, and only choose
a pair of disjoint hexagons (1, 0) and (x, 0) with 3 ≤ x ≤ p

2 + 1. Then p ≥ 6 since
2p ≥ 12. If p = 6, it is easy to see that x = 4 and t = 1 or 4. Hence, from now on
we suppose that 1 ≤ t < p

2 − 1 or p
2 < t ≤ p − 2. Since the hexagon (1, 0) and

hexagon (x, 0) (i.e. wx−1bxwx bx+t+1wx+t bx+t ) are disjoint, t + 1 /∈ {x, x − 1} and
x + t /∈ {0, 1}. Hence there are the following five cases to be considered.

Case 1 1 ≤ t ≤ x − 3. It follows that on the the unique layer both 3-paths of lower
half parts of hexagons (1, 0) and (x, 0) are separated by both 3-paths of their upper
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Fig. 6 H(16, 1, 5) and x = 5 ≤ t < p
2 − 1

Fig. 7 H(17, 1, 5) and x = 4 ≤ t < p
2 − 1, (r + 1)t + 3 = p + 1

Fig. 8 H(13, 1, 5) and x = 3 ≤ t < p
2 − 1, p + x ≤ (r + 1)t + 3 ≤ p + t

parts since 2 ≤ t + 1 ≤ x − 2 and x < x + t ≤ 2x − 3 ≤ p − 1 (see Fig. 5). Hence
such two hexagons form an ideal configuration.

Case 2 x ≤ t < p
2 − 1. The above result no longer holds since x + 1 ≤ t + 1 <

t + 2 < x + t < p. So we must choose a series of vertical edges so that the cho-
sen hexagons together with such vertical edges form an ideal configuration. We first
choose the following edges: wi t+2b(i+1)t+3 (i = 1, . . . , r ) such that r t + 3 ≤ p and
(r+1)t+3 ≥ p+1 (see Fig. 6). Then (r+1)t+3 ≤ p+t . Since x+t+3 ≤ 2t+3 ≤ p,
r ≥ 2. If p + 2 ≤ (r + 1)t + 3 ≤ p + x − 1 (see Fig. 6), the required is verified.

If (r + 1)t + 3 = p + 1, the edge wr t+2b(r+1)t+3 is replaced by wr t+1bp, and
further choose the edgewr t+ j b(r+1)t+ j+1 with 3 ≤ j ≤ x (see Fig. 7). Then r t + 3 ≤
r t + j ≤ (r + 1)t and p + 2 ≤ (r + 1)t + j + 1 ≤ p + x − 1. The requirement is
also verified.

The last case p + x ≤ (r + 1)t + 3 ≤ p + t is now considered. Let j0 :=
(r + 1)t + 3 − (p + x). Then 0 ≤ j0 ≤ t − x . The edge wr t+2b(r+1)t+3 is replaced
by wr t+1− j0 b(r+1)t+2− j0 (see Fig. 8). Since r t + 1 ≥ r t + 1 − j0 ≥ (r − 1)t + x + 1
and (r + 1)t + 2 − j0 = p + x − 1 ≡ x − 1 (mod p), the required is verified.

Case 3 p−x+2 ≤ t ≤ p−2. The result in Case 1 still holds since x+1 ≤ t+1 ≤ p−1
and p + 2 ≤ x + t ≤ p + x − 2.

Case 4 p
2 < t ≤ p − x − 1. Since x < t + 1 < t + 2 < x + t ≤ p − 1, then the

chosen hexagons (1, 0) and (x, 0) is not an ideal configuration. So it is necessary to
choose additional edges. We choose the following certain edges:

wt+2+i0 b2t+3+i0 , wx+1+ j0 bx+t+2+ j0 , (1)

with
0 ≤ i0 ≤ x − 3 and 1 ≤ j0 ≤ t − x − 1. (2)
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Fig. 9 Illustration for Case 4 in the proof of Theorem 3.2

Hence wt+2+i0 lies between wt+2 and wt+x−1, and wx+1+ j0 lies between wx+2 and
wt .

We suppose firstly that p+x ≥ 2t +2. Let i0 := p+x −2t −2 and j0 := t −x −1.
Clearly, the inequalities (2) holds. On the other hand, 2t +3+ i0 = p + x +1 ≤ p + t
and x + t + 2 + j0 = 2t + 1 < p + x (see H(14, 1, 8) in Fig. 9). Hence the chosen
hexagons together with both edges in (1) form an ideal configuration.

From now on, suppose that p + x ≤ 2t + 1 (see H(14, 1, 10) in Fig. 9 ). For
convenience we construct the following arithmetic sequence of integers:

ck := (t + 2)+ k(t + 1 − p), k = 0, 1, . . .

with the inequality t + 1 − p ≤ −x ≤ −3. Let i0 := 0, j0 := p − t − 3 and
j ′0 := x + 1 + j0 = p + x − t − 2. Since 1 ≤ p − t − x ≤ j0 < t − x − 1,
x + 2 ≤ j ′0 < t and the inequalities (2) also holds. Then both edges in (1) can be
expressed aswc0 bc1 andw j ′0 b j ′0+t+1. Further j ′0+t+1 = p+x−1, and x+2 ≤ c1 < t .
Hence bc1 lies between bx+2 and bt−1. Put

k0 := min{k : ck ≤ j ′0}.

Since c0 > j ′0, k0 ≥ 1. If k0 = 1, the vertex bc1 lies on the left side of w j ′0 and the
required is verified. Otherwise, k0 ≥ 2, i.e. 2p + x − 3t ≤ 4, which together with
t ≤ p − x − 1 and x ≥ 3 imply that

x + 2 ≤ j ′0 ≤ t − x + 1 ≤ t − 2.

If ck0−1 ≥ j ′0 + 2, since ck0 = ck0−1 + (t + 1 − p) ≥ j ′0 + 2 + (t + 1 − p) = x + 1
we have

x + 1 ≤ ck0 ≤ j ′0 < ck0−1 < · · · < c1 < t.

We now choose further edges wc1bc2 , wc2 bc3 , . . . , wck0−1 bck0
. Hence the chosen part

has such incident verticeswx , bck0
, w j ′0 , bck0−1 , wck0−1 , . . . , bc1 , wc1 , bt+1 fromwx to

bt+1, and is thus an ideal configuration.
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If ck0−1 = j ′0 + 1, ck0 = x . Let c′
k0−1 := ck0−1 + 1 = j ′0 + 2 and c′

k0
:= ck0 + 1

(see H(14, 1, 10) in Fig. 9). Then

x + 1 = c′
k0
< j ′0 < ck0−1 < c′

k0−1 < ck0−2 < · · · < c1 < t.

We now choose further edgeswc1bc2 , wc2 bc3, . . . , wck0−2 bck0−1 , wc′
k0−1

bc′
k0

. Hence the

chosen part has such incident vertices wx , bc′
k0
, w j ′0 , bck0 −1, wc′

k0−1
, bck0−2 , wck0−2 ,

. . . , bc1 , wc1 , bt+1 from wx to bt+1, and is thus an ideal configuration.

Case 5 p is odd and t = p−1
2 . The chosen hexagons (1, 0) and (x, 0) together with

the additional edge wt+3b2t+3 form an ideal configuration since 1 < 2t + 3 − p =
2 < x < 1 + t < t + 2 < t + x < p.

Hence the chosen pair of disjoint hexagons are mutually resonant in any cases by
Lemma 2.3. So the entire proof is completed. 	


In the following, we consider k-resonant (k ≥ 3) toroidal polyhexes H(p, 1, t).

Lemma 3.3 If H(p, 1, t) is 3-resonant, then t ∈
{

1, 2, p − 2, p − 3, p−3
2 ,

p−1
2 ,

p+1
2

}

or 2p−3
2 ≤ t ≤ 2p

3 or p−3
3 ≤ t ≤ p

3 .

Proof Let H(p, 1, t) be a 3-resonant toroidal polyhex where t /∈ {1, 2, p − 2, p − 3}.
Then hexagons (1, 0) and (3, 0) are disjoint. For the vertex wt+2, bt+2, bt+3 and
b2t+3 are its three neighbors. Clearly, bt+2 ∈ h1, bt+3 ∈ h3 and b2t+3 ∈ h2t+3. Let
H := {h1, h3, h2t+3}. Since H(p, 1, t) is 3-resonant and wt+2 is an isolated vertex
of H(p, 1, t) − H, the hexagons in H must not be mutually disjoint. Thus either
h1 ∩ h2t+3 �= ∅ or h3 ∩ h2t+3 �= ∅.

For p ≤ 2t+3, since h1∩h2t+3 �= ∅ or h3∩h2t+3 �= ∅, we have p ≤ 2t+3 ≤ p+4
or 2p ≤ 3t + 3 ≤ 2p + 3. Further, p−3

2 ≤ t ≤ p+1
2 or 2p−3

2 ≤ t ≤ 2p
3 . By Lemma

3.2, t �= p
2 − 1, p

2 . So t ∈ { p−3
2 ,

p−1
2 ,

p+1
2 } or 2p−3

2 ≤ t ≤ 2p
3 .

For p > 2t+3, since h1∩h2t+3 �= ∅ or h3∩h2t+3 �= ∅, we have p ≤ 3t+3 ≤ p+3.

So p−3
3 ≤ t ≤ p

3 . 	

Lemma 3.4 H(p, 1, t) is k-resonant (k ≥ 3) for t ∈ {1, 2, p − 2, p − 3}.
Proof Let H := {S0, S1, . . . , Sk−1} be a set of any k mutually disjoint hexagons such
that Si = (xi , 0). We may assume 1 = x0 < x1 < · · · < xk−1 < p by Lemma 2.1.

If t = 1 or 2, any hexagon (x, 0) with xi − (t + 1) ≤ x ≤ xi + t + 1 satisfies
hx ∩ hxi �= ∅. So hx /∈ H. Clearly, hxi is incident with L0 at wxi −1, bxi , wxi , bxi +t ,

wxi +t and bxi +t+1, and xi −1 < xi < xi +t < xi +t +1 ≤ xi+1 −1 for i ∈ Zk . There-
fore H forms an ideal configuration of H(p, 1, t). By Lemma 2.3, H is a resonant
pattern. So H(p, 1, t) with t = 1 or 2 is k-resonant.

By Lemma 2.2, we immediately have H(p, 1, t) is k-resonant for t ∈ {1, 2, p −
2, p − 3}. 	


Lemma 3.5 H(p, 1, t) is k-resonant (k ≥ 3) for t ∈
{

p−3
2 ,

p−1
2 ,

p+1
2

}
.
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Fig. 10 Illustration for the proof of Lemma 3.5

Proof By Lemma 2.2, H(p, 1, p−3
2 ) is equivalent to H(p, 1, p+1

2 ) since p−1− p−3
2 =

p+1
2 . It is enough to prove H(p, 1, t) is k-resonant for t = p−3

2 and p−1
2 . By Lemma

3.4, assume t /∈ {1, 2, p − 2, p − 3}. Let H := {S0, S1, . . . , Sk−1} be a set of any k
mutually disjoint hexagons such that Si = (xi , 0).

Case 1 t = p−3
2 . For x = xi + t + 1 or xi + t + 2, hx /∈ H since hx ∩ Si �= ∅. Choose

the vertical edgewxi +t+1bxi +2t+2 = wxi +t+1bxi −1. Let Gi be the subgraph consisting
of Si and wxi +t+1bxi −1. Then Gi induces two paths on L0, i.e., P(bxi −1, wxi ) and
P(bxi +t , wxi +t+1) (see the paths illustrated by thick lines in H(13, 1, 5) in Fig. 10).
Let S := H ∪ {wxi +t+1bxi −1|i ∈ Zk}. Then S is alternating incident with black ver-
tices and white vertices along any direction of L0. Hence S is an ideal configuration
of H(p, q, t).

Case 2 t = p−1
2 . If L0 − H = ∅ or every component of L0 − H is an odd path, then

H is a resonant pattern by Lemma 2.4. So we suppose L0 − H contains an even path.

Claim P(bxi +1, bxi+1−1) is a component of L0 − H if and only if P(wxi +t+1,

wxi+1+t−1) is.

Proof of Claim Suppose that P(bxi +1, bxi+1−1) is a component of L0 − H. That
is S j ∩ P(bxi +1, bxi+1−1) = ∅ for any j ∈ Zk . If P(wxi +t+1, wxi+1+t−1) is not a
component of L0 −H, then S j ∩ P(wxi +t+1, wxi+1+t−1) �= ∅ for some j ∈ Zk . Hence
S j = (x j , 0) satisfies xi + t + 1 ≤ x j ≤ xi+1 + t − 2 or xi + t + 1 ≤ x j + t ≤
xi+1 + t − 1. Further xi ≤ x j + t ≤ xi+1 − 3 or xi + 1 ≤ x j ≤ xi+1 − 1. So
S j ∩ P(bxi +1, bxi+1−1) �= ∅, which contradicts that P(bxi +1, bxi+1−1) is a component
of L − H.

A similar discussion proves the sufficiency of Claim. 	

For each pair of P(bxi +1, bxi+1−1) and P(wxi +t+1, wxi+1+t−1), choose the verti-

cal edge wxi +t+1bxi +1 (see H(13, 1, 6) in Fig. 10). Delete bxi +1 and wxi +t+1 from
P(bxi +1, bxi+1−1) and P(wxi +t+1, wxi+1+t−1), respectively. Then obtain two odd
paths P(wxi +1, bxi+1−1) and P(bxi +t+2, wxi+1+t−1). Let S be the set of all hexagons
in H together with all chosen edges. Then either L0 − S = ∅ or every component of
L0 − S is an odd path. Therefore, S is a required ideal configuration by Lemma 2.4.

By Lemma 2.3, H is a resonant pattern. So H(p, 1, t) is k-resonant for t ∈{
p−3

2 ,
p−1

2 ,
p+1

2

}
. 	
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Fig. 11 H(24, 1, 8) and S2 with x2 ≤ t

In the following, we turn to H(p, 1, t) with 2p−3
2 ≤ t ≤ 2p

3 or p−3
3 ≤ t ≤ p

3 . By

Lemma 2.2, H
(

p, 1, p−i
3

)
is equivalent to H

(
p, 1, 2p−(3−i)

3

)
since p − 1 − p−i

3 =
2p−(3−i)

3 . So it suffices to consider H(p, 1, t) with p−3
3 ≤ t ≤ p

3 . Let Nx be the
subgraph consisting of three hexagons (x, 0), (x + δ, 0) and (x + 2δ, 0) where δ
satisfies

δ :=
{

t if t = p
3 or p−1

3 ;
t + 1 if t = p−3

3 or p−2
3 .

Any two hexagons in Nx are adjacent. Let σ(Nx ) := min{x, x + δ, x + 2δ} (mod p),
then σ(Nx ) ≤ t . Let Eσ(Nx ) := {hx ∩ hx+δ, hx+δ ∩ hx+2δ, hx+2δ ∩ hx } (for example,
see Fig. 11, E0 = {b0w0, b8w8, b16w16} illustrated by dash lines in H(24, 1, 8)).
Clearly, Ei ∪ E j (i �= j) is an edge cut of H(p, 1, t) which separates H(p, 1, t) into
two components. Let Ti, j and Tj,i be the components containing P(wi , w j−1) and
P(w j , wi−1), respectively (see Tj0, j1 in Fig. 11).

Lemma 3.6 H(p, 1, t) is k-resonant (k ≥ 3) for p−3
3 ≤ t ≤ p

3 or 2p−3
3 ≤ t ≤ 2p

3 .

Proof It suffices to prove H(p, 1, t) is k-resonant for p−3
3 ≤ t ≤ p

3 .
Let H = {S0, S1, . . . , Sk−1} be a set of any k mutually disjoint hexagons of

H(p, q, t), and let Si = (xi , 0) ∈ Nxi and ji = σ(Nxi ) ≤ t . By Lemma 2.1, we
may assume S0 = (0, 0) and 0 = j0 < j1 · · · < jk−1 ≤ t . According to Lemma 2.3,
it is sufficient to construct an ideal configuration S such that H ⊆ S. For i, i +1 ∈ Zk ,
Tji , ji+1 is one component of H(p, 1, t) separated by the edge cut E ji ∪ E ji+1 .

Case 1 t = p
3 or t = p−3

3 . We only show the lemma holds for t = p
3 here. A similar

discussion shows the lemma is true for t = p−3
3 . For t = p

3 , we have δ = t , i.e.
Nx = hx ∪ hx+t ∪ hx+2t .

If x2 ≤ t , then (Tj0, j1 ∩ L0)−H consists of paths P(b1, bx2−1), P(wt+1, wx2+t−1)

and P(w2t , bx2+2t ). Choose two additional vertical edges w2t b1 and wx2+t−1bx2+2t .
Let E ′

0,1 := {w2t b1, wx2+t−1bx2+2t } (see Tj0, j1 in Fig. 11).
If t < x2 ≤ 2t (i.e., x2 + t ≤ 3t = p), paths P(b1, bx2+2t ), P(wt+1, bx2−1) and

P(w2t , wx2+t−1) are three components of (Tj0, j1 ∩ L0) − H. Choose the additional
vertical edge w2t b1 and let E ′

0,1 := {w2t b1} (see Tj1, j2 in Fig. 11).
If 2t < x2 < p (i.e., p < x2 + t < p + t), then paths P(b1, wx2+t−1), P(wt+1,

bx2−t ) and P(w2t , bx2−1) are three components of (Tj0, j1 ∩ L0)− H and all of them
are odd paths. Let E ′

0,1 := ∅.
Every component of (Tj0, j1 ∩ L0)−H∪ E ′

0,1 is an odd path. For any Si , Si+1 ∈ H,
let φ be the automorphism moving every vertex horizontally backwards xi − 1 units.
Then φ(N ji ) = N j0 . So we can choose vertical edge set E ′

i,i+1 for Si and Si+1 as we
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Fig. 12 H(22, 1, 7) and illustration for the proof of Case 2

choose E ′
0,1 for S0 and S1. Let S := H ∪ (∪k−1

i=0 E ′
i,i+1). Then every component of

(Tji , ji+1 ∩ L0)− S for any i ∈ Zk is an odd path. By Lemma 2.4, H ∪ (∪k−1
i=0 E ′

i,i+1)

is a desired ideal configuration.

Case 2 t = p−1
3 or t = p−2

3 . We only show the lemma is true for t = p−1
3 . A similar

discussion implies the lemma holds for t = p−2
3 . For t = p−1

3 , we have δ = t (i.e.,
Ni = hi ∪ hi+t ∪ hi+2t ).

If x2 ≤ t , then P(b1, bx2−1), P(wt+1, wx2+t−1) and P(w2t , bx2+2t ) are the three
components of (Tj0, j1 ∩ L0)− H. Let E ′

0,1 := {wx2+t−1bx2+2t , wx2+2t−1bx2−1} (see
Tj0, j1 in Fig. 12 (up)).

If t < x2 ≤ 2t (i.e., 0 ≤ x2 +2t ≤ t (mod p)), then P(b1, bx2+2t ), P(wt+1, bx2−1)

and P(w2t , wx2+t−1) are the three components of (Tj0, j1 ∩ L0) − H. Let E ′
0,1 :=

{wx2+t−1bx2+2t } (see Tj0, j1 in Fig. 12 (below)).
If 2t < x2 < p (i.e., 0 ≤ x2+t < t (mod p)), then P(b1, wx2+t−1), P(wt+1, bx2+2t )

and P(w2t , bx2−1) are the three components of (Tj0, j1 ∩ L0)− H. Let E ′
0,1 := ∅.

It is easy to see that every component of (Tj0, j1 ∩ L0)−H∪ E ′
0,1 is an odd path. For

any Si , Si+1 ∈ H (i ∈ Zk), then φ(N ji ) = N j0 where φ is the automorphism moving
every vertex horizontally backward xi − 1 units. We choose vertical edge set E ′

i,i+1

for Si and Si+1 as we choose E ′
0,1 for S0 and S1. Then let S := H ∪ (∪k−1

i=0 E ′
i,i+1). So

every component of (Tji , ji+1 ∩ L0) − S for i ∈ Zk is an odd path. Therefore, S is a
required ideal configuration according to Lemma 2.4. 	


Combining Lemmas 3.3, 3.4, 3.5 and 3.6, we have following theorem.

Theorem 3.7 H(p, 1, t) is k-resonant (k ≥ 3) if and only if one of the following cases
appears:

1. p−3
3 ≤ t ≤ p

3 ,

2. 2p−3
2 ≤ t ≤ 2p

3 ,

3. t ∈ {1, 2, p − 2, p − 3, p−3
2 ,

p−1
2 ,

p+1
2 }.

	


4 k-resonant H( p, q, t) with min( p, q) ≥ 2

In this section, we consider k-resonant (k ≥ 3) H(p, q, t) with min(p, q) ≥ 2.

Theorem 4.1 [16] H(p, q, t) with min(p, q) ≥ 2 is 3-resonant if and only if one of
the following cases appears:
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Fig. 13 Illustration for the
proof of Lemma 4.2

1. (p, q, t) = (2, 2, 1),
2. p = 2 and q = 3,
3. p = 3 and q ≥ 2,
4. p ≥ 4, q = 2 and t ∈ {1, p − 3, p − 1},
5. p ≥ 4, q = 3 and t ∈ {0, p − 3, p − 2, p − 1}. 	

Lemma 4.2 For q ≥ 2, H(3, q, t) is k-resonant (k ≥ 3).

Proof Let H = {S0, S1, . . . , Sk−1} be a set of any k mutually disjoint hexagons
of H(3, q, t) such that Si = (xi , yi ) where xi ∈ Z3, yi ∈ Zq . Since hexagons
(0, y), (1, y) and (2, y) are pairwise adjacent, at most one of them belongs to H.
We may assume that 0 = y0 < y1 < · · · < yk−1 ≤ q − 1. By Lemma 2.3, it suffices
to construct an ideal configuration S containing H.

If yi+1 = yi + 1, then L yi − (Si ∪ Si+1) = ∅. Let Ei = ∅. If yi+1 = yi + 2
and xi+1 = xi , let Ei = {bxi −1,yiwxi −2,yi +1}. For the remaining cases, let Ei =
{bxi +1,yi + jwxi ,yi + j+1|0 ≤ j < j + 1 ≤ yi+1 − yi − 1} ∪ {wxi+1+1,yi+1bxi+1,yi+1−1}
(see Fig. 13). Let S := H ∪ (∪i∈Zk Ei ). Then L y − S is empty or it consists of odd
paths. Therefore, S is a desired ideal configuration of H(3, q, t) by Lemma 2.4. 	

Lemma 4.3 For p ≥ 4 and t ∈ {1, p − 3, p − 1}, H(p, 2, t) is k-resonant (k ≥ 3).

Proof By Lemma 2.2, H(p, 2, 1) is equivalent to H(p, 2, p − 3). So we consider
only H(p, 2, t) with t = 1 or p − 1. Let H = {S0, S1, . . . , Sk−1} be a set of any k
mutually disjoint hexagons of H(p, 2, t) such that Si = (xi , yi ) where xi ∈ Zp and
yi ∈ Z2. Without loss of generality, let 1 = x0 < x1 < · · · < xk−1 < p since q = 2.
In the following, we will construct an ideal configuration S with H ⊆ S.

Case 1 t = 1. For Si ∈ H and (x, y) �= (xi , yi ), then hx,y /∈ H if xi −1 ≤ x ≤ xi +1.
Let

ei =
{
wxi ,yi +1bxi +1,yi if yi = 0;
wxi −1,yi −1bxi +1,yi if yi = 1.

Then ei and Si are disjoint. Let Gi be the subgraph induced by Si and ei . Then
Gi ∩ G j = ∅ for i �= j . Clearly, Gi ∩ L y (y ∈ Z2) is a path starting from a white
vertex and ending at a black vertex (see the paths illustrated by thick lines in H(8, 2, 1)
in Fig. 14). So S := H ∪ {ei |i ∈ Zk} is a desired ideal configuration.
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Fig. 14 Toroidal polyhexes H(8, 2, 1) (left) and H(8, 2, 7) (right)

Fig. 15 The dangling double edges in T0 and dashed lines in T1, T2, T3 are identified

Fig. 16 k-resonant H(9, 3, 0)

Case 2 t = p − 1. For any two consecutive hexagons Si , Si+1 ∈ H with yi = yi+1,
choose (see H(8, 2, 7) in Fig. 14)

e′
i =

{
wxi ,yi +1bxi +1,yi if yi = 0;
wxi +1,yi −1bxi +1,yi if yi = 1.

Let S := H ∪ {e′
i |yi = yi+1 and i ∈ Zk}. Then it is easy to check that S is a required

ideal configuration. 	

In the following, we will consider H(p, 3, t) with p ≥ 4 and t ∈ {0, p − 3, p −

2, p −1}. By Lemma 2.2, we know that H(p, 3, 0) and H(p, 3, p −1) are equivalent
to H(p, 3, p −3) and H(p, 3, p −2), respectively. Therefore it is enough to consider
H(p, 3, 0) and H(p, 3, p − 1).

For toroidal polyhexes H(p, 3, 0) and H(p, 3, p − 1), hexagons (x, 0), (x, 1) and
(x, 2) form a cyclic hexagonal chain, denoted by Cx (see C1 in Fig. 16 and T1 in
Fig. 17). Clearly, hexagons in Cx are pairwise adjacent. Use Tx,y (x �= y) to de-
note the subgraph consisting of hexagon columns Cx+1, . . . ,Cy−1 for y �= x + 1,
and Tx,x+1 = Cx ∩ Cx+1 for y = x + 1. For example, Tx,x+i (i = 1, 2, 3 and 4) of
H(p, 3, p−1) are illustrated in Fig. 15, where T0 = Tx,x+1, T1 = Tx,x+2, T2 = Tx,x+3
and T3 = Tx,x+4. It can be verified that each set of disjoint hexagons of Ti (i = 1, 2, 3)
is a resonant pattern of Ti and T3 contains a unique resonant pattern with three disjoint
hexagons as shown in Fig. 15.

Lemma 4.4 For p ≥ 4 and t ∈ {0, p − 3, p − 2, p − 1}, H(p, 3, t) is k-resonant
(k ≥ 3).
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Fig. 17 k-resonant H(10, 3, 9)

Proof It suffices to prove that H(p, 3, t) is k-resonant for p ≥ 4 and t = 0, p −1. Let
H = {S0, S1, . . . , Sk−1} be a set of any k disjoint hexagons and let Si = (xi , yi ) ∈ Cxi

where Cxi = hxi ,0 ∪ hxi ,1 ∪ hxi ,2. By Lemma 2.1, let S0 = (1, 0), i.e. x0 = 1. Since
every Cx contains at most one hexagon in H, we may assume that 1 = x0 < x1 <

x2 < · · · < xk−1. Now we turn to construct an ideal configuration S containing H.

Case 1 t = 0.
If y1 = 0, then x1 ≥ 3. Then (T1,x1 ∩ L0)− (S0 ∪ S1) = P(b2,0, bx1−1,0), (T1,x1 ∩

L1)−(S0∪S1) = P(w1,1, bx1,1) and (T1,x1 ∩L2)−(S0∪S1) = P(w2,2, wx1+t−1,2) =
P(w2,2, wx1−1,2) (see T1,4 of H(9, 3, 0) in Fig. 16). Choose additional vertical edges
w1,1b2,0, wx1−1,2bx1,1 and let E0,1 := {w1,1b2,0, wx1−1,2bx1,1}.

If y1 = 1, then x1 ≥ 2. Then (T1,x1 ∩ L0)− (S0 ∪ S1) = P(b2,0, wx1−1,0), (T1,x1 ∩
L1)− (S0 ∪ S1) = P(w1,1, bx1−1,1) and (T1,x1 ∩ L2)− (S0 ∪ S1) = P(w2,2, bx1,2).
All these three paths are odd. Let E0,1 := ∅.

If y1 = 2, then x1 ≥ 3. Then (T1,x1 ∩ L0) − (S0 ∪ S1) = P(b2,0, bx1,0), (T1,x1 ∩
L1)− (S0 ∪ S1) = P(w1,1, wx1−1,1) and (T1,x1 ∩ L2)− (S0 ∪ S1) = P(w2,2, bx1−1,2)

(see T4,7 of H(9, 3, 0) in Fig. 16). Choose the additional edgew1,1b2,0 and let E0,1 :=
{w1,1b2,0}.

Therefore, (T1,x1 ∩ L y)− (S1 ∪ S2 ∪ E0,1) is an odd path for each y ∈ Z3. For any
Si , Si+1 ∈ H (i, i + 1 ∈ Zk), let φ ∈ 〈φrl , φtb〉 be the automorphism moving every
vertex horizontally backwards xi − 1 units and downwards yi units. Then φ(Si ) = S0
and φ(Cxi ) = Cx0 . So we can choose a vertical edge set Ei,i+1 as we choose E0,1.
Then (Txi ,xi+1 ∩ L y) − (Si ∪ Si+1 ∪ Ei,i+1) is an odd path for each y ∈ Z3. Hence
S = H ∪ (∪k−1

i=0 Ei,i+1) is a desired ideal configuration of H(p, 3, 0) by Lemma 2.4.

Case 2 t = p − 1.
Notice that the hexagon (x, 0) is adjacent to every hexagons in Cx−1 and the hexa-

gon (x, 2) is adjacent to every hexagons in Cx+1, and T3 has a unique set consisting of
three disjoint hexagons as illustrated in Fig. 15. If H contains three hexagons in three
consecutive cyclic hexagonal chains, say Cx−1,Cx and Cx+1, then Cx−2 ∩ H = ∅
and Cx+2 ∩ H = ∅. So the number of consecutive cyclic hexagonal chains such that
each of them contains one hexagon in H is no more than three.

For any given H, H(p, 3, p − 1) can be decomposed to a series of T0, T1, T2
and T3 subject to H (see Fig. 17): Cx ,Cx+1 and Cx+2 together correspond to a T3 if
Cx+i ∩H �= ∅ (i = 0, 1, 2); Cx and Cx+1 together correspond to a T2 if Cx+i ∩H �= ∅
(i = 0, 1) and Cx+i ∩ H = ∅ (i = −1, 2); Cx corresponds to T1 if Cx ∩ H �= ∅
and Cx+i ∩ H = ∅ (i = −1, 2); others are treated as T0s. Since T0 has a perfect
matching as illustrated in Fig. 15 and any mutually disjoint hexagons in Ti form a
resonant pattern of Ti (i = 1, 2, 3), immediately we have H is a resonant pattern of
H(p, 3, p − 1). Hence H(p, 3, p − 1) is k-resonant. 	
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For toroidal polyhexes H(2, 2, 1) and H(2, 3, t) (0 ≤ t ≤ 1), any two hexagons
in them are adjacent. So they are the degenerated cases of k-resonant (k ≥ 3) toroidal
polyhexes. By Lemmas 4.2, 4.3, 4.4 and Theorem 4.1, we have following result:

Theorem 4.5 A 3-resonant H(p, q, t) with min(p, q) ≥ 2 is k-resonant (k ≥ 3). 	


5 Remark

Benzenoid systems [25], coronoid bezenoid systems [2,10], open-end nanotubes [20]
and Klein-bottle polyhexes [17] are k-resonant (k ≥ 3) if and only if they are 3-
resonant. Here, by Theorems 3.7 and 4.5, we immediately have a parallel result for
toroidal polyhexes.

Theorem 5.1 H(p, q, t) is k-resonant (k ≥ 3) if and only if it is 3-resonant. 	

Acknowledgment This paper was supported by NSFC.

References

1. A. Altschuler, Construction and enumeration of regular maps on the torus, Discrete Math. 4, 201–217
(1973)

2. R. Chen, X. Guo, k-coverable coronoid systems, J. Math. Chem. 12, 147–162 (1993)
3. E. Clar, The Aromatic Sextet (Wiley, London, 1972)
4. M. Deza, P.W. Fowler, A. Rassat, K.M. Rogers, Fullerenes as tilings of surfaces, J. Chem. Inf. Comput.

Sci. 40, 550–558 (2000)
5. X. Guo, k-resonace in benzenoid systems, open-ended carbon nanotubes, toroidal polyhexes; and

k-cycle resonant graphs, MATCH Commun. Math. Comput. Chem. 56, 439–456 (2006)
6. X. Guo, F. Zhang, k-resonant benzenoid systems and k-cycle resonant graphs, J. Chem. Inf. Comput.

Sci. 41(3), 480–483 (2001)
7. E.C. Kirby, Recent work on toroidal and other exotic fullerene structures, in From Chemical Topology

to Three-Dimensional Geometry, Ed. A.T. Balaban (Plenum Press, New York, 1997) pp. 263–296
8. E.C. Kirby, R.B. Mallion, P. Pollak, Toridal polyhexes, J. Chem. Soc. Faraday Trans. 89(12), 1945–1953

(1993)
9. D.J. Klein, Elemental benzenoids, J. Chem. Inf. Comput. Sci. 34, 453–459 (1994)

10. K. Lin, R. Chen, k-coverable polyhex graphs, Ars Combin. 43, 33–48 (1996)
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