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Abstract A toroidal polyhex H(p, q, t) is a cubic bipartite graph embedded on the
torus such that each face is a hexagon, which can be described by a string (p, q, t) of
three integers (p ≥ 1, q ≥ 1, 0 ≤ t ≤ p − 1). A set H of mutually disjoint hexagons
of H(p, q, t) is called a resonant pattern if H(p, q, t) has a prefect matching M such
that all haxgons in H are M-alternating. A toroidal polyhex H(p, q, t) is k-resonant
if any i (1 ≤ i ≤ k) mutually disjoint hexagons form a resonant pattern. In [16], Shiu,
Lam and Zhang characterized 1, 2 and 3-resonant toroidal polyhexes H(p, q, t) for
min(p, q) ≥ 2. In this paper, we characterize k-resonant toroidal polyhexes H(p, 1, t).
Furthermore, we show that a toroidal polyhex H(p, q, t) is k-resonant (k ≥ 3) if and
only if it is 3-resonant.
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1 Introduction

A toroidal polyhex is a cubic bipartite graph embedded on torus such that each face is a
hexagon, described by a string (p, q, t)of three integers (p ≥ 1, q ≥ 1, 0 ≤ t ≤ p−1)
and denoted by H(p, q, t) [11,16]. Toroidal polyhex had been considered in mathe-
matics as hexagonal tessellation (or dually triangulation) on torus [1,12,18]. In chem-
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istry, toroidal polyhex has been thought as a new possible carbon cage different from
spherical fullerene [4], also named toroidal fullerene or elementary benzenoid [9]. We
refer readers to surveys of toroidal polyhex [7,8].

Let G be a graph admitting a 2-cell embedding on torus. A face is even if it is
bound by a cycle with even size. In this paper, a face also means the cycle bounding it.
A set M of independent edges of G is called a perfect matching (a Kekulé structure in
chemistry) if every vertex of G is incident with exactly one edge of M . A cycle C of
G is M-alternating (or conjugated circuit) if the edges of C appear alternately in and
off M . A set H of mutually disjoint even faces of G is called a rsonant pattern if G
has a perfect matching M such that all faces in H are simultaneously M-alternating.
For a positive integer k, a graph is k-resonant if any i (i ≤ k) mutually disjoint even
faces form a resonant pattern. A resonant pattern H is also called a sextet pattern if
every even face in H is a hexagon. In this paper, all hexagons in a sextet pattern will
be designated by depicting circles within them; see Fig. 4.

In the Clar’s aromatic sextet theory [3], Clar found that various electronic properties
of polycyclic aromatic hydrocarbons can be predicted by sextet patterns from a purely
empirical standpoint, by which an aromatic hydrocarbon molecule with lager num-
ber of mutually resonant hexagons is more stable. From Randić’s conjugated circuits
model [13–15], the conjugated circuits with different sizes have different resonance
energies and the conjugated hexagons contribute the largest resonant energy among
all (4n + 2)-length circuits which contribute positively to resonant energy of molec-
ular. Zhang and Chen [19] characterized completely 1-resonant benzenoid systems: a
1-resonant benzenoid system coincides with a normal benzenoid system. The similar
result was extended to coronoid systems [2,21] and plane bipartite graphs [23]. Later,
Zheng [24,25] characterized general k-resonant benzenoid systems and showed that
any 3-resonant benzenoid system are also k-resonant (k ≥ 3). For coronoid benenoid
systems [10] and open-end nanotubes [20], the result is still valid. Recently, the con-
cept of k-resonance was extended to toroidal polyhexes and Klein-bottle polyhexes
[16,17]. We refer readers to recent surveys [5,6].

Each toroidal polyhex H(p, q, t) is elementary [16]. Different from plane elemen-
tary bipartite graph which is also 1-resonant, H(2, 2, 0) is the unique non-1-resonant
toroidal polyhex [16]. In [16], Shiu, Lam and Zhang have characterized 1, 2 and
3-resonant toroidal polyhexes H(p, q, t) for min(p, q) ≥ 2. In this paper, we charac-
terize k-resonant toroidal polyhexes H(p, 1, t)which are not discussed in [16] (except
the degenerated cases H(1, q, 0), H(p, 1, 0) and H(p, 1, p−1) since each hexagonal
face is not bounded by a cycle). Moreover, we prove that a toroidal polyhex H(p, q, t)
(p ≥ 1, q ≥ 1 and 0 ≤ t ≤ p − 1) is k-resonant (k ≥ 3) if and only if it is 3-
resonant, and thus settle an open problem of Guo [5]. For convenience, a toroidal
polyhex H(p, q, t) in question always means a non-degenerated case throughout this
paper.

2 Preliminaries

A toroidal polyhex is generated from a p ×q-parallelogram P of the hexagonal lattice
with the usual torus boundary identification with torsion t . A p × q-parallelogram
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Fig. 1 Toroidal polyhex
H(7, 3, 3) arising from a
7 × 3-parallelogram of the
hexagonal lattice

Fig. 2 The affine coordinate system X OY for H(7, 3, 2)

P considered here has two horizontal sides and two lateral sides: Each side connects
two hexagon centers; Two horizontal sides pass perpendicularly through p edges and
two lateral sides pass perpendicularly through q edges (see Fig. 1). In order to form
a toroidal polyhex H(p, q, t), first identify two lateral sides of P to form a tube, and
then identify the top side of the tube with its bottom side after rotating it through t
hexagons.

Let H(p, q, t) be a toroidal polyhex and V (H), E(H) be vertex set and edge set
respectively. Clearly, V (H) admits a proper 2-coloring: the vertices which are incident
with one downward vertical edge and two upwardly oblique edges are colored black
and other vertices white (see Fig. 2). Establish an affine coordinate system X OY for
H(p, q, t) as introduced in [16]: Take one horizontal side and one lateral side of the
p × q-parallelogram P as x-axis and y-axis such that two axes form an angle of 60◦
and P lies in non-negative region; The origin O is the intersection of two axes; Define
one unit length to be the distance between a pair of parallel edges in a hexagon. For any
positive integer n, let Zn := {0, 1, . . . , n − 1} with module additions. Now, we give
a labeling to vertices and hexagons of H(p, q, t). Label each hexagon by its center
coordinate (x, y) (x ∈ Zp, y ∈ Zq ) and denote it by hx,y or (x, y). For the upper
edge of (x, y) perpendicular to y-axis, label its black end by bx,y and its white end
by wx,y (see Fig. 2). So w0,yb0,y ∈ E(H) and wx,0bx+t+1,q−1 ∈ E(H). We also call
the cycle w0,yb1,yw1,yb2,y . . . wp−1,yb0,yw0,y yth layer, denoted by L y .

Let G1 and G2 be two simple graphs. An isomorphism between them is a bijection
φ : V (G1) → V (G2) such that, for any u, v ∈ V (G1), uv ∈ E(G1) if and only
if φ(u)φ(v) ∈ E(G2). An automorphism of a simple graph G is an isomorphism G
to itself. For a toroidal polyhex H(p, q, t), there are three hexagon-preserving auto-
morphisms: the r -l shift φrl moving every vertex horizontally backwards a unit, the
t-b shift φtb moving every vertex downwards a unit along the y-axis, and the 180◦
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Fig. 3 Illustration of the reflective symmetry against O O ′

Fig. 4 An ideal configuration of
H(6, 3, 1): the hexagons
depicted with circles and the
vertical double edges

rotation R2 surrounding the center of the parallelogram P . The generated subgroup
〈φrl , φtb, R2〉 is transitive on both vertex set and hexagon set of H(p, q, t) ([16]).

Lemma 2.1 [16] H(p, q, t) is hexagon-transitive. 	

Two toroidal polyhexes are equivalent if there exists a hexagon-preserving

isomorphism between them. Let O O ′ be a vertical line through the origin O of affine
coordinate of H(p, q, t) and let ψ be the reflective symmetry of H(p, q, t) against
O O ′ (see Fig. 3). Thenψ is a hexagon-preserving isomorphism andψ(H(p, q, t)) =
H(p, q, t ′) where t ′ ≡ p − q − t (mod p).

Lemma 2.2 H(p, q, t) is equivalent to H(p, q, t ′) where t ′ ≡ p − q − t (mod p).
	


Let S be a subgraph of a toroidal polyhex H(p, q, t) such that every component is
either hexagon or K2 (a complete graph with two vertices). S is an ideal configuration
[16] if it is alternately incident with white and black vertices along any direction of
every yth layer (see Fig. 4); S is a Clar cover [22] if it is a spanning subgraph of
H(p, q, t).

Lemma 2.3 [16] An ideal configuration S of a toroidal polyhex H(p, q, t) can be
extended to a Clar cover, and the hexagons in S are thus mutually resonant. 	


Let u, v be two vertices of yth layer with x-coordinates i and j , respectively. We
use P(u, v) ⊂ L y to denote the path from u to v such that the x-coordinate set
of all vertices of P(u, v) is {i, i + 1, . . . , j − 1, j}. For example, P(bi,y, w j,y) =
bi,ywi,ybi+1,y · · ·w j−1,yb j,yw j,y . A path is odd if it has odd number of edges, and it
is even, otherwise.

Lemma 2.4 Let S be a subgraph of H(p, q, t) such that every component is either
hexagon or K2. For any y ∈ Zq , if L y − S = ∅ or each component of L y − S is an
odd path, then S is an ideal configuration.
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Fig. 5 H(12, 1, 3) and x = 6 ≥ t + 3

Proof If L y − S = ∅, S is alternatingly incident with white and black vertices along
any direction of yth layer. If L y − S �= ∅, let P(u, v) be an odd path which is a com-
ponent of L y −S. Since H(p, q, t) is bipartite graph, the white vertices and the black
vertices appear alternatingly in P(u, v). So u and v have different colors. Immediately
we have S is alternatingly incident with white and black vertices along any direction
of yth layer. So S is an ideal configuration of H(p, q, t). 	


3 k-resonant H( p, 1, t)

In this section, the y-coordinate of all labels of vertices and hexagons of H(p, 1, t)
are omitted since they have the same value 0. For example L0 = w0b1w1b2w2 . . .

wp−1b0w0.
Since any hexagon of toroidal polyhexes H(p, 1, t) itself exactly forms an ideal

configuration, H(p, 1, t) is 1-resonant by Lemma 2.3.

Theorem 3.1 H(p, 1, t) is 1-resonant. 	


Theorem 3.2 H(p, 1, t) is 2-resonant if and only if either p < 8, or p ≥ 8 is odd,
or p ≥ 8 is even and t �= p

2 − 1 or p
2 .

Proof It is enough to prove that H(p, 1, t) is non-2-resonant if and only if p ≥ 8 is
even and t = p

2 − 1 or p
2 .

We first suppose that p ≥ 8 is even and t = p
2 − 1 or p

2 and show that H(p, 1, t) is
non-2-resonant. Choose a pair of hexagons (1, 0) and (3, 0), which can be expressed
asw0b1w1bt+2wt+1bt+1 andw2b3w3b4+tw3+t b3+t respectively, and are thus disjoint
since 3 < t + 1 and 4 + t ≤ p. Further the vertexw2+t outside the hexagons has three
neighbors b3+t , bt+2 and b1 (or b3), since (2 + t)+ t + 1 ≡ 1 or 3 (mod p) according
as t = p

2 − 1 or p
2 . That is, H(p, 1, t) − h1 − h3 has an isolated vertex w2+t . This

shows that such two hexagons are not mutually resonant.
For the other cases it is sufficient to choose a pair of disjoint hexagons and show

their mutual resonance. We consider H(p, 1, t) with 1 ≤ t ≤ p − 2, and only choose
a pair of disjoint hexagons (1, 0) and (x, 0) with 3 ≤ x ≤ p

2 + 1. Then p ≥ 6 since
2p ≥ 12. If p = 6, it is easy to see that x = 4 and t = 1 or 4. Hence, from now on
we suppose that 1 ≤ t < p

2 − 1 or p
2 < t ≤ p − 2. Since the hexagon (1, 0) and

hexagon (x, 0) (i.e. wx−1bxwx bx+t+1wx+t bx+t ) are disjoint, t + 1 /∈ {x, x − 1} and
x + t /∈ {0, 1}. Hence there are the following five cases to be considered.

Case 1 1 ≤ t ≤ x − 3. It follows that on the the unique layer both 3-paths of lower
half parts of hexagons (1, 0) and (x, 0) are separated by both 3-paths of their upper
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Fig. 6 H(16, 1, 5) and x = 5 ≤ t < p
2 − 1

Fig. 7 H(17, 1, 5) and x = 4 ≤ t < p
2 − 1, (r + 1)t + 3 = p + 1

Fig. 8 H(13, 1, 5) and x = 3 ≤ t < p
2 − 1, p + x ≤ (r + 1)t + 3 ≤ p + t

parts since 2 ≤ t + 1 ≤ x − 2 and x < x + t ≤ 2x − 3 ≤ p − 1 (see Fig. 5). Hence
such two hexagons form an ideal configuration.

Case 2 x ≤ t < p
2 − 1. The above result no longer holds since x + 1 ≤ t + 1 <

t + 2 < x + t < p. So we must choose a series of vertical edges so that the cho-
sen hexagons together with such vertical edges form an ideal configuration. We first
choose the following edges: wi t+2b(i+1)t+3 (i = 1, . . . , r ) such that r t + 3 ≤ p and
(r+1)t+3 ≥ p+1 (see Fig. 6). Then (r+1)t+3 ≤ p+t . Since x+t+3 ≤ 2t+3 ≤ p,
r ≥ 2. If p + 2 ≤ (r + 1)t + 3 ≤ p + x − 1 (see Fig. 6), the required is verified.

If (r + 1)t + 3 = p + 1, the edge wr t+2b(r+1)t+3 is replaced by wr t+1bp, and
further choose the edgewr t+ j b(r+1)t+ j+1 with 3 ≤ j ≤ x (see Fig. 7). Then r t + 3 ≤
r t + j ≤ (r + 1)t and p + 2 ≤ (r + 1)t + j + 1 ≤ p + x − 1. The requirement is
also verified.

The last case p + x ≤ (r + 1)t + 3 ≤ p + t is now considered. Let j0 :=
(r + 1)t + 3 − (p + x). Then 0 ≤ j0 ≤ t − x . The edge wr t+2b(r+1)t+3 is replaced
by wr t+1− j0 b(r+1)t+2− j0 (see Fig. 8). Since r t + 1 ≥ r t + 1 − j0 ≥ (r − 1)t + x + 1
and (r + 1)t + 2 − j0 = p + x − 1 ≡ x − 1 (mod p), the required is verified.

Case 3 p−x+2 ≤ t ≤ p−2. The result in Case 1 still holds since x+1 ≤ t+1 ≤ p−1
and p + 2 ≤ x + t ≤ p + x − 2.

Case 4 p
2 < t ≤ p − x − 1. Since x < t + 1 < t + 2 < x + t ≤ p − 1, then the

chosen hexagons (1, 0) and (x, 0) is not an ideal configuration. So it is necessary to
choose additional edges. We choose the following certain edges:

wt+2+i0 b2t+3+i0 , wx+1+ j0 bx+t+2+ j0 , (1)

with
0 ≤ i0 ≤ x − 3 and 1 ≤ j0 ≤ t − x − 1. (2)
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Fig. 9 Illustration for Case 4 in the proof of Theorem 3.2

Hence wt+2+i0 lies between wt+2 and wt+x−1, and wx+1+ j0 lies between wx+2 and
wt .

We suppose firstly that p+x ≥ 2t +2. Let i0 := p+x −2t −2 and j0 := t −x −1.
Clearly, the inequalities (2) holds. On the other hand, 2t +3+ i0 = p + x +1 ≤ p + t
and x + t + 2 + j0 = 2t + 1 < p + x (see H(14, 1, 8) in Fig. 9). Hence the chosen
hexagons together with both edges in (1) form an ideal configuration.

From now on, suppose that p + x ≤ 2t + 1 (see H(14, 1, 10) in Fig. 9 ). For
convenience we construct the following arithmetic sequence of integers:

ck := (t + 2)+ k(t + 1 − p), k = 0, 1, . . .

with the inequality t + 1 − p ≤ −x ≤ −3. Let i0 := 0, j0 := p − t − 3 and
j ′0 := x + 1 + j0 = p + x − t − 2. Since 1 ≤ p − t − x ≤ j0 < t − x − 1,
x + 2 ≤ j ′0 < t and the inequalities (2) also holds. Then both edges in (1) can be
expressed aswc0 bc1 andw j ′0 b j ′0+t+1. Further j ′0+t+1 = p+x−1, and x+2 ≤ c1 < t .
Hence bc1 lies between bx+2 and bt−1. Put

k0 := min{k : ck ≤ j ′0}.

Since c0 > j ′0, k0 ≥ 1. If k0 = 1, the vertex bc1 lies on the left side of w j ′0 and the
required is verified. Otherwise, k0 ≥ 2, i.e. 2p + x − 3t ≤ 4, which together with
t ≤ p − x − 1 and x ≥ 3 imply that

x + 2 ≤ j ′0 ≤ t − x + 1 ≤ t − 2.

If ck0−1 ≥ j ′0 + 2, since ck0 = ck0−1 + (t + 1 − p) ≥ j ′0 + 2 + (t + 1 − p) = x + 1
we have

x + 1 ≤ ck0 ≤ j ′0 < ck0−1 < · · · < c1 < t.

We now choose further edges wc1bc2 , wc2 bc3 , . . . , wck0−1 bck0
. Hence the chosen part

has such incident verticeswx , bck0
, w j ′0 , bck0−1 , wck0−1 , . . . , bc1 , wc1 , bt+1 fromwx to

bt+1, and is thus an ideal configuration.
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If ck0−1 = j ′0 + 1, ck0 = x . Let c′
k0−1 := ck0−1 + 1 = j ′0 + 2 and c′

k0
:= ck0 + 1

(see H(14, 1, 10) in Fig. 9). Then

x + 1 = c′
k0
< j ′0 < ck0−1 < c′

k0−1 < ck0−2 < · · · < c1 < t.

We now choose further edgeswc1bc2 , wc2 bc3, . . . , wck0−2 bck0−1 , wc′
k0−1

bc′
k0

. Hence the

chosen part has such incident vertices wx , bc′
k0
, w j ′0 , bck0 −1, wc′

k0−1
, bck0−2 , wck0−2 ,

. . . , bc1 , wc1 , bt+1 from wx to bt+1, and is thus an ideal configuration.

Case 5 p is odd and t = p−1
2 . The chosen hexagons (1, 0) and (x, 0) together with

the additional edge wt+3b2t+3 form an ideal configuration since 1 < 2t + 3 − p =
2 < x < 1 + t < t + 2 < t + x < p.

Hence the chosen pair of disjoint hexagons are mutually resonant in any cases by
Lemma 2.3. So the entire proof is completed. 	


In the following, we consider k-resonant (k ≥ 3) toroidal polyhexes H(p, 1, t).

Lemma 3.3 If H(p, 1, t) is 3-resonant, then t ∈
{

1, 2, p − 2, p − 3, p−3
2 ,

p−1
2 ,

p+1
2

}

or 2p−3
2 ≤ t ≤ 2p

3 or p−3
3 ≤ t ≤ p

3 .

Proof Let H(p, 1, t) be a 3-resonant toroidal polyhex where t /∈ {1, 2, p − 2, p − 3}.
Then hexagons (1, 0) and (3, 0) are disjoint. For the vertex wt+2, bt+2, bt+3 and
b2t+3 are its three neighbors. Clearly, bt+2 ∈ h1, bt+3 ∈ h3 and b2t+3 ∈ h2t+3. Let
H := {h1, h3, h2t+3}. Since H(p, 1, t) is 3-resonant and wt+2 is an isolated vertex
of H(p, 1, t) − H, the hexagons in H must not be mutually disjoint. Thus either
h1 ∩ h2t+3 �= ∅ or h3 ∩ h2t+3 �= ∅.

For p ≤ 2t+3, since h1∩h2t+3 �= ∅ or h3∩h2t+3 �= ∅, we have p ≤ 2t+3 ≤ p+4
or 2p ≤ 3t + 3 ≤ 2p + 3. Further, p−3

2 ≤ t ≤ p+1
2 or 2p−3

2 ≤ t ≤ 2p
3 . By Lemma

3.2, t �= p
2 − 1, p

2 . So t ∈ { p−3
2 ,

p−1
2 ,

p+1
2 } or 2p−3

2 ≤ t ≤ 2p
3 .

For p > 2t+3, since h1∩h2t+3 �= ∅ or h3∩h2t+3 �= ∅, we have p ≤ 3t+3 ≤ p+3.

So p−3
3 ≤ t ≤ p

3 . 	

Lemma 3.4 H(p, 1, t) is k-resonant (k ≥ 3) for t ∈ {1, 2, p − 2, p − 3}.
Proof Let H := {S0, S1, . . . , Sk−1} be a set of any k mutually disjoint hexagons such
that Si = (xi , 0). We may assume 1 = x0 < x1 < · · · < xk−1 < p by Lemma 2.1.

If t = 1 or 2, any hexagon (x, 0) with xi − (t + 1) ≤ x ≤ xi + t + 1 satisfies
hx ∩ hxi �= ∅. So hx /∈ H. Clearly, hxi is incident with L0 at wxi −1, bxi , wxi , bxi +t ,

wxi +t and bxi +t+1, and xi −1 < xi < xi +t < xi +t +1 ≤ xi+1 −1 for i ∈ Zk . There-
fore H forms an ideal configuration of H(p, 1, t). By Lemma 2.3, H is a resonant
pattern. So H(p, 1, t) with t = 1 or 2 is k-resonant.

By Lemma 2.2, we immediately have H(p, 1, t) is k-resonant for t ∈ {1, 2, p −
2, p − 3}. 	


Lemma 3.5 H(p, 1, t) is k-resonant (k ≥ 3) for t ∈
{

p−3
2 ,

p−1
2 ,

p+1
2

}
.
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Fig. 10 Illustration for the proof of Lemma 3.5

Proof By Lemma 2.2, H(p, 1, p−3
2 ) is equivalent to H(p, 1, p+1

2 ) since p−1− p−3
2 =

p+1
2 . It is enough to prove H(p, 1, t) is k-resonant for t = p−3

2 and p−1
2 . By Lemma

3.4, assume t /∈ {1, 2, p − 2, p − 3}. Let H := {S0, S1, . . . , Sk−1} be a set of any k
mutually disjoint hexagons such that Si = (xi , 0).

Case 1 t = p−3
2 . For x = xi + t + 1 or xi + t + 2, hx /∈ H since hx ∩ Si �= ∅. Choose

the vertical edgewxi +t+1bxi +2t+2 = wxi +t+1bxi −1. Let Gi be the subgraph consisting
of Si and wxi +t+1bxi −1. Then Gi induces two paths on L0, i.e., P(bxi −1, wxi ) and
P(bxi +t , wxi +t+1) (see the paths illustrated by thick lines in H(13, 1, 5) in Fig. 10).
Let S := H ∪ {wxi +t+1bxi −1|i ∈ Zk}. Then S is alternating incident with black ver-
tices and white vertices along any direction of L0. Hence S is an ideal configuration
of H(p, q, t).

Case 2 t = p−1
2 . If L0 − H = ∅ or every component of L0 − H is an odd path, then

H is a resonant pattern by Lemma 2.4. So we suppose L0 − H contains an even path.

Claim P(bxi +1, bxi+1−1) is a component of L0 − H if and only if P(wxi +t+1,

wxi+1+t−1) is.

Proof of Claim Suppose that P(bxi +1, bxi+1−1) is a component of L0 − H. That
is S j ∩ P(bxi +1, bxi+1−1) = ∅ for any j ∈ Zk . If P(wxi +t+1, wxi+1+t−1) is not a
component of L0 −H, then S j ∩ P(wxi +t+1, wxi+1+t−1) �= ∅ for some j ∈ Zk . Hence
S j = (x j , 0) satisfies xi + t + 1 ≤ x j ≤ xi+1 + t − 2 or xi + t + 1 ≤ x j + t ≤
xi+1 + t − 1. Further xi ≤ x j + t ≤ xi+1 − 3 or xi + 1 ≤ x j ≤ xi+1 − 1. So
S j ∩ P(bxi +1, bxi+1−1) �= ∅, which contradicts that P(bxi +1, bxi+1−1) is a component
of L − H.

A similar discussion proves the sufficiency of Claim. 	

For each pair of P(bxi +1, bxi+1−1) and P(wxi +t+1, wxi+1+t−1), choose the verti-

cal edge wxi +t+1bxi +1 (see H(13, 1, 6) in Fig. 10). Delete bxi +1 and wxi +t+1 from
P(bxi +1, bxi+1−1) and P(wxi +t+1, wxi+1+t−1), respectively. Then obtain two odd
paths P(wxi +1, bxi+1−1) and P(bxi +t+2, wxi+1+t−1). Let S be the set of all hexagons
in H together with all chosen edges. Then either L0 − S = ∅ or every component of
L0 − S is an odd path. Therefore, S is a required ideal configuration by Lemma 2.4.

By Lemma 2.3, H is a resonant pattern. So H(p, 1, t) is k-resonant for t ∈{
p−3

2 ,
p−1

2 ,
p+1

2

}
. 	
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Fig. 11 H(24, 1, 8) and S2 with x2 ≤ t

In the following, we turn to H(p, 1, t) with 2p−3
2 ≤ t ≤ 2p

3 or p−3
3 ≤ t ≤ p

3 . By

Lemma 2.2, H
(

p, 1, p−i
3

)
is equivalent to H

(
p, 1, 2p−(3−i)

3

)
since p − 1 − p−i

3 =
2p−(3−i)

3 . So it suffices to consider H(p, 1, t) with p−3
3 ≤ t ≤ p

3 . Let Nx be the
subgraph consisting of three hexagons (x, 0), (x + δ, 0) and (x + 2δ, 0) where δ
satisfies

δ :=
{

t if t = p
3 or p−1

3 ;
t + 1 if t = p−3

3 or p−2
3 .

Any two hexagons in Nx are adjacent. Let σ(Nx ) := min{x, x + δ, x + 2δ} (mod p),
then σ(Nx ) ≤ t . Let Eσ(Nx ) := {hx ∩ hx+δ, hx+δ ∩ hx+2δ, hx+2δ ∩ hx } (for example,
see Fig. 11, E0 = {b0w0, b8w8, b16w16} illustrated by dash lines in H(24, 1, 8)).
Clearly, Ei ∪ E j (i �= j) is an edge cut of H(p, 1, t) which separates H(p, 1, t) into
two components. Let Ti, j and Tj,i be the components containing P(wi , w j−1) and
P(w j , wi−1), respectively (see Tj0, j1 in Fig. 11).

Lemma 3.6 H(p, 1, t) is k-resonant (k ≥ 3) for p−3
3 ≤ t ≤ p

3 or 2p−3
3 ≤ t ≤ 2p

3 .

Proof It suffices to prove H(p, 1, t) is k-resonant for p−3
3 ≤ t ≤ p

3 .
Let H = {S0, S1, . . . , Sk−1} be a set of any k mutually disjoint hexagons of

H(p, q, t), and let Si = (xi , 0) ∈ Nxi and ji = σ(Nxi ) ≤ t . By Lemma 2.1, we
may assume S0 = (0, 0) and 0 = j0 < j1 · · · < jk−1 ≤ t . According to Lemma 2.3,
it is sufficient to construct an ideal configuration S such that H ⊆ S. For i, i +1 ∈ Zk ,
Tji , ji+1 is one component of H(p, 1, t) separated by the edge cut E ji ∪ E ji+1 .

Case 1 t = p
3 or t = p−3

3 . We only show the lemma holds for t = p
3 here. A similar

discussion shows the lemma is true for t = p−3
3 . For t = p

3 , we have δ = t , i.e.
Nx = hx ∪ hx+t ∪ hx+2t .

If x2 ≤ t , then (Tj0, j1 ∩ L0)−H consists of paths P(b1, bx2−1), P(wt+1, wx2+t−1)

and P(w2t , bx2+2t ). Choose two additional vertical edges w2t b1 and wx2+t−1bx2+2t .
Let E ′

0,1 := {w2t b1, wx2+t−1bx2+2t } (see Tj0, j1 in Fig. 11).
If t < x2 ≤ 2t (i.e., x2 + t ≤ 3t = p), paths P(b1, bx2+2t ), P(wt+1, bx2−1) and

P(w2t , wx2+t−1) are three components of (Tj0, j1 ∩ L0) − H. Choose the additional
vertical edge w2t b1 and let E ′

0,1 := {w2t b1} (see Tj1, j2 in Fig. 11).
If 2t < x2 < p (i.e., p < x2 + t < p + t), then paths P(b1, wx2+t−1), P(wt+1,

bx2−t ) and P(w2t , bx2−1) are three components of (Tj0, j1 ∩ L0)− H and all of them
are odd paths. Let E ′

0,1 := ∅.
Every component of (Tj0, j1 ∩ L0)−H∪ E ′

0,1 is an odd path. For any Si , Si+1 ∈ H,
let φ be the automorphism moving every vertex horizontally backwards xi − 1 units.
Then φ(N ji ) = N j0 . So we can choose vertical edge set E ′

i,i+1 for Si and Si+1 as we

123



280 J Math Chem (2008) 44:270–285

Fig. 12 H(22, 1, 7) and illustration for the proof of Case 2

choose E ′
0,1 for S0 and S1. Let S := H ∪ (∪k−1

i=0 E ′
i,i+1). Then every component of

(Tji , ji+1 ∩ L0)− S for any i ∈ Zk is an odd path. By Lemma 2.4, H ∪ (∪k−1
i=0 E ′

i,i+1)

is a desired ideal configuration.

Case 2 t = p−1
3 or t = p−2

3 . We only show the lemma is true for t = p−1
3 . A similar

discussion implies the lemma holds for t = p−2
3 . For t = p−1

3 , we have δ = t (i.e.,
Ni = hi ∪ hi+t ∪ hi+2t ).

If x2 ≤ t , then P(b1, bx2−1), P(wt+1, wx2+t−1) and P(w2t , bx2+2t ) are the three
components of (Tj0, j1 ∩ L0)− H. Let E ′

0,1 := {wx2+t−1bx2+2t , wx2+2t−1bx2−1} (see
Tj0, j1 in Fig. 12 (up)).

If t < x2 ≤ 2t (i.e., 0 ≤ x2 +2t ≤ t (mod p)), then P(b1, bx2+2t ), P(wt+1, bx2−1)

and P(w2t , wx2+t−1) are the three components of (Tj0, j1 ∩ L0) − H. Let E ′
0,1 :=

{wx2+t−1bx2+2t } (see Tj0, j1 in Fig. 12 (below)).
If 2t < x2 < p (i.e., 0 ≤ x2+t < t (mod p)), then P(b1, wx2+t−1), P(wt+1, bx2+2t )

and P(w2t , bx2−1) are the three components of (Tj0, j1 ∩ L0)− H. Let E ′
0,1 := ∅.

It is easy to see that every component of (Tj0, j1 ∩ L0)−H∪ E ′
0,1 is an odd path. For

any Si , Si+1 ∈ H (i ∈ Zk), then φ(N ji ) = N j0 where φ is the automorphism moving
every vertex horizontally backward xi − 1 units. We choose vertical edge set E ′

i,i+1

for Si and Si+1 as we choose E ′
0,1 for S0 and S1. Then let S := H ∪ (∪k−1

i=0 E ′
i,i+1). So

every component of (Tji , ji+1 ∩ L0) − S for i ∈ Zk is an odd path. Therefore, S is a
required ideal configuration according to Lemma 2.4. 	


Combining Lemmas 3.3, 3.4, 3.5 and 3.6, we have following theorem.

Theorem 3.7 H(p, 1, t) is k-resonant (k ≥ 3) if and only if one of the following cases
appears:

1. p−3
3 ≤ t ≤ p

3 ,

2. 2p−3
2 ≤ t ≤ 2p

3 ,

3. t ∈ {1, 2, p − 2, p − 3, p−3
2 ,

p−1
2 ,

p+1
2 }.

	


4 k-resonant H( p, q, t) with min( p, q) ≥ 2

In this section, we consider k-resonant (k ≥ 3) H(p, q, t) with min(p, q) ≥ 2.

Theorem 4.1 [16] H(p, q, t) with min(p, q) ≥ 2 is 3-resonant if and only if one of
the following cases appears:
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Fig. 13 Illustration for the
proof of Lemma 4.2

1. (p, q, t) = (2, 2, 1),
2. p = 2 and q = 3,
3. p = 3 and q ≥ 2,
4. p ≥ 4, q = 2 and t ∈ {1, p − 3, p − 1},
5. p ≥ 4, q = 3 and t ∈ {0, p − 3, p − 2, p − 1}. 	

Lemma 4.2 For q ≥ 2, H(3, q, t) is k-resonant (k ≥ 3).

Proof Let H = {S0, S1, . . . , Sk−1} be a set of any k mutually disjoint hexagons
of H(3, q, t) such that Si = (xi , yi ) where xi ∈ Z3, yi ∈ Zq . Since hexagons
(0, y), (1, y) and (2, y) are pairwise adjacent, at most one of them belongs to H.
We may assume that 0 = y0 < y1 < · · · < yk−1 ≤ q − 1. By Lemma 2.3, it suffices
to construct an ideal configuration S containing H.

If yi+1 = yi + 1, then L yi − (Si ∪ Si+1) = ∅. Let Ei = ∅. If yi+1 = yi + 2
and xi+1 = xi , let Ei = {bxi −1,yiwxi −2,yi +1}. For the remaining cases, let Ei =
{bxi +1,yi + jwxi ,yi + j+1|0 ≤ j < j + 1 ≤ yi+1 − yi − 1} ∪ {wxi+1+1,yi+1bxi+1,yi+1−1}
(see Fig. 13). Let S := H ∪ (∪i∈Zk Ei ). Then L y − S is empty or it consists of odd
paths. Therefore, S is a desired ideal configuration of H(3, q, t) by Lemma 2.4. 	

Lemma 4.3 For p ≥ 4 and t ∈ {1, p − 3, p − 1}, H(p, 2, t) is k-resonant (k ≥ 3).

Proof By Lemma 2.2, H(p, 2, 1) is equivalent to H(p, 2, p − 3). So we consider
only H(p, 2, t) with t = 1 or p − 1. Let H = {S0, S1, . . . , Sk−1} be a set of any k
mutually disjoint hexagons of H(p, 2, t) such that Si = (xi , yi ) where xi ∈ Zp and
yi ∈ Z2. Without loss of generality, let 1 = x0 < x1 < · · · < xk−1 < p since q = 2.
In the following, we will construct an ideal configuration S with H ⊆ S.

Case 1 t = 1. For Si ∈ H and (x, y) �= (xi , yi ), then hx,y /∈ H if xi −1 ≤ x ≤ xi +1.
Let

ei =
{
wxi ,yi +1bxi +1,yi if yi = 0;
wxi −1,yi −1bxi +1,yi if yi = 1.

Then ei and Si are disjoint. Let Gi be the subgraph induced by Si and ei . Then
Gi ∩ G j = ∅ for i �= j . Clearly, Gi ∩ L y (y ∈ Z2) is a path starting from a white
vertex and ending at a black vertex (see the paths illustrated by thick lines in H(8, 2, 1)
in Fig. 14). So S := H ∪ {ei |i ∈ Zk} is a desired ideal configuration.
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Fig. 14 Toroidal polyhexes H(8, 2, 1) (left) and H(8, 2, 7) (right)

Fig. 15 The dangling double edges in T0 and dashed lines in T1, T2, T3 are identified

Fig. 16 k-resonant H(9, 3, 0)

Case 2 t = p − 1. For any two consecutive hexagons Si , Si+1 ∈ H with yi = yi+1,
choose (see H(8, 2, 7) in Fig. 14)

e′
i =

{
wxi ,yi +1bxi +1,yi if yi = 0;
wxi +1,yi −1bxi +1,yi if yi = 1.

Let S := H ∪ {e′
i |yi = yi+1 and i ∈ Zk}. Then it is easy to check that S is a required

ideal configuration. 	

In the following, we will consider H(p, 3, t) with p ≥ 4 and t ∈ {0, p − 3, p −

2, p −1}. By Lemma 2.2, we know that H(p, 3, 0) and H(p, 3, p −1) are equivalent
to H(p, 3, p −3) and H(p, 3, p −2), respectively. Therefore it is enough to consider
H(p, 3, 0) and H(p, 3, p − 1).

For toroidal polyhexes H(p, 3, 0) and H(p, 3, p − 1), hexagons (x, 0), (x, 1) and
(x, 2) form a cyclic hexagonal chain, denoted by Cx (see C1 in Fig. 16 and T1 in
Fig. 17). Clearly, hexagons in Cx are pairwise adjacent. Use Tx,y (x �= y) to de-
note the subgraph consisting of hexagon columns Cx+1, . . . ,Cy−1 for y �= x + 1,
and Tx,x+1 = Cx ∩ Cx+1 for y = x + 1. For example, Tx,x+i (i = 1, 2, 3 and 4) of
H(p, 3, p−1) are illustrated in Fig. 15, where T0 = Tx,x+1, T1 = Tx,x+2, T2 = Tx,x+3
and T3 = Tx,x+4. It can be verified that each set of disjoint hexagons of Ti (i = 1, 2, 3)
is a resonant pattern of Ti and T3 contains a unique resonant pattern with three disjoint
hexagons as shown in Fig. 15.

Lemma 4.4 For p ≥ 4 and t ∈ {0, p − 3, p − 2, p − 1}, H(p, 3, t) is k-resonant
(k ≥ 3).
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Fig. 17 k-resonant H(10, 3, 9)

Proof It suffices to prove that H(p, 3, t) is k-resonant for p ≥ 4 and t = 0, p −1. Let
H = {S0, S1, . . . , Sk−1} be a set of any k disjoint hexagons and let Si = (xi , yi ) ∈ Cxi

where Cxi = hxi ,0 ∪ hxi ,1 ∪ hxi ,2. By Lemma 2.1, let S0 = (1, 0), i.e. x0 = 1. Since
every Cx contains at most one hexagon in H, we may assume that 1 = x0 < x1 <

x2 < · · · < xk−1. Now we turn to construct an ideal configuration S containing H.

Case 1 t = 0.
If y1 = 0, then x1 ≥ 3. Then (T1,x1 ∩ L0)− (S0 ∪ S1) = P(b2,0, bx1−1,0), (T1,x1 ∩

L1)−(S0∪S1) = P(w1,1, bx1,1) and (T1,x1 ∩L2)−(S0∪S1) = P(w2,2, wx1+t−1,2) =
P(w2,2, wx1−1,2) (see T1,4 of H(9, 3, 0) in Fig. 16). Choose additional vertical edges
w1,1b2,0, wx1−1,2bx1,1 and let E0,1 := {w1,1b2,0, wx1−1,2bx1,1}.

If y1 = 1, then x1 ≥ 2. Then (T1,x1 ∩ L0)− (S0 ∪ S1) = P(b2,0, wx1−1,0), (T1,x1 ∩
L1)− (S0 ∪ S1) = P(w1,1, bx1−1,1) and (T1,x1 ∩ L2)− (S0 ∪ S1) = P(w2,2, bx1,2).
All these three paths are odd. Let E0,1 := ∅.

If y1 = 2, then x1 ≥ 3. Then (T1,x1 ∩ L0) − (S0 ∪ S1) = P(b2,0, bx1,0), (T1,x1 ∩
L1)− (S0 ∪ S1) = P(w1,1, wx1−1,1) and (T1,x1 ∩ L2)− (S0 ∪ S1) = P(w2,2, bx1−1,2)

(see T4,7 of H(9, 3, 0) in Fig. 16). Choose the additional edgew1,1b2,0 and let E0,1 :=
{w1,1b2,0}.

Therefore, (T1,x1 ∩ L y)− (S1 ∪ S2 ∪ E0,1) is an odd path for each y ∈ Z3. For any
Si , Si+1 ∈ H (i, i + 1 ∈ Zk), let φ ∈ 〈φrl , φtb〉 be the automorphism moving every
vertex horizontally backwards xi − 1 units and downwards yi units. Then φ(Si ) = S0
and φ(Cxi ) = Cx0 . So we can choose a vertical edge set Ei,i+1 as we choose E0,1.
Then (Txi ,xi+1 ∩ L y) − (Si ∪ Si+1 ∪ Ei,i+1) is an odd path for each y ∈ Z3. Hence
S = H ∪ (∪k−1

i=0 Ei,i+1) is a desired ideal configuration of H(p, 3, 0) by Lemma 2.4.

Case 2 t = p − 1.
Notice that the hexagon (x, 0) is adjacent to every hexagons in Cx−1 and the hexa-

gon (x, 2) is adjacent to every hexagons in Cx+1, and T3 has a unique set consisting of
three disjoint hexagons as illustrated in Fig. 15. If H contains three hexagons in three
consecutive cyclic hexagonal chains, say Cx−1,Cx and Cx+1, then Cx−2 ∩ H = ∅
and Cx+2 ∩ H = ∅. So the number of consecutive cyclic hexagonal chains such that
each of them contains one hexagon in H is no more than three.

For any given H, H(p, 3, p − 1) can be decomposed to a series of T0, T1, T2
and T3 subject to H (see Fig. 17): Cx ,Cx+1 and Cx+2 together correspond to a T3 if
Cx+i ∩H �= ∅ (i = 0, 1, 2); Cx and Cx+1 together correspond to a T2 if Cx+i ∩H �= ∅
(i = 0, 1) and Cx+i ∩ H = ∅ (i = −1, 2); Cx corresponds to T1 if Cx ∩ H �= ∅
and Cx+i ∩ H = ∅ (i = −1, 2); others are treated as T0s. Since T0 has a perfect
matching as illustrated in Fig. 15 and any mutually disjoint hexagons in Ti form a
resonant pattern of Ti (i = 1, 2, 3), immediately we have H is a resonant pattern of
H(p, 3, p − 1). Hence H(p, 3, p − 1) is k-resonant. 	
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For toroidal polyhexes H(2, 2, 1) and H(2, 3, t) (0 ≤ t ≤ 1), any two hexagons
in them are adjacent. So they are the degenerated cases of k-resonant (k ≥ 3) toroidal
polyhexes. By Lemmas 4.2, 4.3, 4.4 and Theorem 4.1, we have following result:

Theorem 4.5 A 3-resonant H(p, q, t) with min(p, q) ≥ 2 is k-resonant (k ≥ 3). 	


5 Remark

Benzenoid systems [25], coronoid bezenoid systems [2,10], open-end nanotubes [20]
and Klein-bottle polyhexes [17] are k-resonant (k ≥ 3) if and only if they are 3-
resonant. Here, by Theorems 3.7 and 4.5, we immediately have a parallel result for
toroidal polyhexes.

Theorem 5.1 H(p, q, t) is k-resonant (k ≥ 3) if and only if it is 3-resonant. 	
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